Equations of a parabolas graph Cheat Sheet

Equations of a Parabola: Vertex at (0,0); Focus on Axis; a > 0

Vertex Focus Directdix Equation Description
$(0,0)$ $(a,0)$ $x=-a$ ${ y }^{ 2 }=4ax$ Axis of symmetry is the x-axis, opens right
$(0,0)$ $(-a,0)$ $x=a$ ${ y }^{ 2 }=-4ax$ Axis of symmetry is the x-axis,opens left
$(0,0)$ $(0,a)$ $y=-a$ ${ x }^{ 2 }=4ay$ Axis of symmetry is the y-axis,opens up
$(0,0)$ $(0,-a)$ $y=a$ ${ x }^{ 2 }=-4ay$ Axis of symmetry is the y-axis,opens down



Equations of a Parabola: Vertex at (h,k); Axis of Symmetry Parallel to a Coordinate Axis; a > 0

Vertex Focus Directdix Equation Description
$(h,k)$ $(h+a,k)$ $x=h-a$ ${ (y-k) }^{ 2 }=4a(x-h)$ Axis of symmetry is parallel to the x-axis, opens right
$(h,k)$ $(h-a,k)$ $x=h+a$ ${ (y-k) }^{ 2 }=-4a(x-h)$ Axis of symmetry is parallel to the x-axis, opens left
$(h,k)$ $(h,k+a)$ $y=k-a$ ${ (x-h) }^{ 2 }=4a(y-k)$ Axis of symmetry is parallel to the y-axis, opens up
$(h,k)$ $(h,k-a)$ $y=k+a$ ${ (x-h) }^{ 2 }=-4a(y-k)$ Axis of symmetry is the y-axis,opens down